
J Comput Virol (2010) 6:91–103
DOI 10.1007/s11416-009-0119-3

ORIGINAL PAPER

Auto-Sign: an automatic signature generator for high-speed
malware filtering devices

Gil Tahan · Chanan Glezer · Yuval Elovici ·
Lior Rokach

Received: 15 June 2008 / Accepted: 12 January 2009 / Published online: 7 February 2009
© Springer-Verlag France 2009

Abstract This research proposes a novel automatic method
(termed Auto-Sign) for extracting unique signatures of
malware executables to be used by high-speed malware fil-
tering devices based on deep-packet inspection and operat-
ing in real-time. Contrary to extant string and token-based
signature generation methods, we implemented Auto-Sign
an automatic signature generation method that can be used
on large-size malware by disregarding signature candidates
which appear in benign executables. Results from experi-
mental evaluation of the proposed method suggest that
picking a collection of executables which closely represents
commonly used code, plays a key role in achieving highly
specific signatures which yield low false positives.

1 Introduction

The time interval from the release of new malicious software
to the wild till the time that the security software/hardware
companies detects the malware, analyze it, generate a sig-
nature and release an update to its clients is highly critical.
During this time interval the malware is undetectable by most
of the signature-based commercial solutions and thus it can
easily propagate [1]. For that reason, it is highly important to

This work has been supported by Deutsche Telekom AG.

G. Tahan · C. Glezer (B) · Y. Elovici · L. Rokach
Deutsche Telekom Laboratory at Ben Gurion University,
84105 Beersheba, Israel
e-mail: Chanan@bgu.ac.il

G. Tahan
e-mail: Gilta@bgu.ac.il

Y. Elovici
e-mail: Elovici@bgu.ac.il

L. Rokach
e-mail: liorrk@bgu.ac.il

detect a new malware as soon as possible and rapidly generate
a good signature so that abundant signature-based solutions
can be updated.

One way to protect organizations from malware is to
deploy high-speed malware filtering appliances on the com-
munication lines that connect the organization to the outside
world. Such appliances are based on deep-packet inspec-
tion in real-time and thus support very simple signatures
for detecting malware. Security appliances are an appealing
solution because they require no local overhead to manage
them, yet they work continuously to protect the enterprise
[2].

This research focuses on automating the process of gener-
ating signatures to be installed on such appliances for known
malware that needs to be filtered by the appliances.
Various techniques have been proposed to derive malware
signatures automatically, including among others: vulnera-
bility-based signatures [1]; payload-based signatures [3,4];
content sifting [5]; semantic-aware signatures [6]; The Amd
algorithm [7]; Honeypot-based signatures [8–10], and poly-
morphic content-based signatures [2,11]. These studies
examine code by matching and analyzing the distribution of
string patterns in communication packets; classifying unsuc-
cessful connections; and modeling invariant code structures.
Such signatures were tested and reported to be effective for
small-sized malware (usually worms) [1,3,4]. Nevertheless,
the employed approaches for signature generation ignore the
fact that many types of malware appear as full-fledged exe-
cutable and therefore contain a significant portion of repeti-
tive code emanating from code generators, development tools
and platforms.

Considering the fact that signature-based systems do not
account for such large common code segments, the quality of
existing signature generation mechanisms is degraded. Such
quality is measured using sensitivity (low false negative for

123

92 G. Tahan et al.

malware) and specificity (low false positive for innocuous
traffic) measures.

In order to address the problems stated above, this research
proposes and evaluates a signature generation technique,
termed Auto-Sign, for generating signatures which can be
used by Network Intrusion Detection and Protection Systems
(NIDS/NIPS) operating as malware filtering devices [12]. For
such devices, Auto-Sign needs to generate a very simple sig-
nature that a network appliance can use for filtering malware
in real-time. A very simple signature is actually a string of
bytes or a simple regular expression of bytes at the most.
To improve its precision, Auto-Sign employs an exhaustive
and structured technique which first sanitizes malware from
segments of common benign code and only then generates
unique signatures which can be later used for detection of
malware traffic.

The scope of this research is on tackling malicious code in
the form of adware, spyware, Trojans, and viruses. Auto-Sign
was tested also on large, full-fledged malicious applications
and not necessarily on short stream-based malware where
common code is not relevant.

Auto-Sign raises many questions with regards to various
aspects of the proposed technique. In this research we were
interested in finding the optimal length and selection criteria
of a signature among several candidates in order to minimize
false positives as well as the size and type of the training set
in order to minimize false positives. This research describes
the Auto-Sign technique and a set of experiments which were
performed on a collection of malicious and benign executa-
bles. Auto-Sign is capable of automatic signature generation
as part of the eDare framework [13] which offers “malware
filtering as a service” and is targeted for Network Service
Providers (NSP), Internet service Providers (ISP), small and
large enterprises.

2 Related work on automatic signature generation
(ASG)

Automated signature generation for new attacks of this type
is extremely difficult due to the following reasons [10]. In
order to create a malware signature, we must identify and
isolate malicious traffic from benign traffic, which is not an
easy task under all circumstances due to sophistication of
hacking techniques. Signature generation for new attacks is
also difficult since as soon as the signature generation meth-
ods are known to the attacker and especially the statistical
ones, he or she may be able to defeat them by using statis-
tical simulability as demonstrated in [14,15]. The signature
must be general enough to capture all instances malicious
traffic while at the same time specific enough to avoid over-
lapping with the content of benign traffic in order to reduce
false positives. This problem has so far been handled in an

ad-hoc way based on human judgment. As a case in point,
current rule-based network Intrusion Detection Systems
(IDS) can do little to stop zero-day worms [4]. They depend
on content, protocol-anomaly and behavioral signatures
which can only be generated in a delay after the malware
has been launched and already created substantial damage.

Several approaches have been employed in order to expe-
dite the process of signature generation for effective contain-
ment of worms. Autograph [3] stores source and destination
addresses of each inbound unsuccessful TCP connection it
observes. Once an external host has made unsuccessful con-
nection attempts to more than s internal IP addresses, the
flow classifier considers it to be a scanner. All successful
connections from an IP address, flagged as a scanner, are
classified as suspicious, and their inbound packets written
to the suspicious flow pool. Autograph next selects the most
frequent byte sequences across the flows in the suspicious
flow pool as signatures. At the start of a worm’s propaga-
tion, the aggregate rate at which all infected hosts scan the
IP address space is quite low. Because Autograph relies on
overhearing unsuccessful scans to identify suspicious source
IP addresses, early in an epidemic an Autograph monitor
will be slow to accumulate suspicious addresses, and in turn
slow to accumulate worm payloads. To address this problem
Autograph uses a tattler that, as its name suggests, shares
suspicious source addresses among all monitors, toward the
goal of accelerating the accumulation of worm payloads.

Honeycomb [8] tries to spot patterns in traffic previously
seen on the honeypot. Honeycomb overlays parts of flows
in the traffic and use a Longest Common Substring (LCS)
[16] algorithm to spot similarities in packet payloads. Tang
and Chen [10] followed-up this work by designing a double-
honeypot system, deployed in a local network for automatic
detection of worm attacks from the Internet. Two algorithms
based on Expectation-Maximization [17] and Gibbs sam-
pling [18] are proposed for efficient computation of Position
Aware Distribution Signature (PADS). The PAYL sensor [4]
employ anomaly detection which is based on the principle
that “zero-day” attacks are delivered in packets whose data
is unusual and distinct from all prior “normal content” flow-
ing to or from the victim’s site. The Nemean architecture
[6] is a semantic-aware Network Intrusion Detection System
(NIDS) which contains two components: a data abstraction
component that normalizes packets from individual sessions
and renders semantic context, and a signature generation
component that clusters similar sessions and uses machine-
learning techniques to generate signatures for each cluster.
In a related study, the Amd algorithm generates semantic-
aware code templates and specifies the conditions for a match
between the templates and the programs being checked [7].
Polygraph [19] provides a content-based signature gener-
ation techniques for polymorphic worms. The underlying
assumption is that possible to automatically generate

123

Auto-Sign: an automatic signature generator for high-speed malware filtering devices 93

signatures that match many variants of polymorphic worms
offering low false positives and low false negatives. New-
some et al. [19] propose and evaluate a system that expands to
notion of single substring signatures (tokens) to conjuctions,
ordered sets of multiple tokens and Bayesian (score) tokens.
EarlyBird [5] sifts through the invariant portion of a worm’s
content will appear frequently on the network as it spreads
or attempts to spread. In Netspy [4] the invariant portion of
network traffic generated by a spyware program is used to
derive a spyware signature. This is because a signature that
has content related to specific user input will miss network
activity generated by the program on other user input. Netspy
uses a variant of the longest common subsequence (LCSeq)
algorithm [20] to find such invariants sections.

Filiol [11] address the problem that commercially avail-
able anti-viruses are not resistant against black-box analysis.
He suggested generating multiple sub-signatures that are ran-
domly selected from a longer signature. Sub signatures are
distributed such that “any sub-pattern is a fixed value which
depends on the user/computer identification data”.

The aforementioned automatic signature generation
techniques focus on analyzing similarities and anomalies in
executables’ substrings, code tokens as well as statistical dis-
tribution of code across variants of malware. Consequently,
testing of such signatures was performed on short, stream-
based malware such as Nimda, Code Red/Code Red II, MS
Blaster (1.8 KB long), Sober, Netsky and B[e]agle. Never-
theless, larger malware executable files, carrying full-fledged
applications usually contain a significant portion of common
code segments which are planted by software development
platforms spawning the malware but are found also in benign
executables. As a result, automatically selecting a signature
that will be both sensitive and specific is a very challenging
task in the case of these large files.

The goal of this research is to generalize the above work
by proposing an automatic signature generation technique,
termed Auto-Sign, capable of generating highly sensitive
and highly specific signatures for malware of any size and
type operating in any operating system environment (i.e.,
Trojan horses, spyware, adware, viruses, and worms). The
technique is also capable of handling malware such as self-
decrypted/self-executed files; or archive files (i.e., CAB, MSI,
Zip). Of course a signature derived for unencrypted/uncom-
pressed malware cannot be used for detecting the same mal-
ware in encrypted or compressed files. Short, stream-based
malware (not a self-contained application) which does not
include significant portions of common code is also not a
typical candidate for Auto-sign.

3 The proposed automatic signature generation method

In order to create and employ signature for effective and
efficient detection of malware in executables, our technique

should generate a signature which complies with several
requirements. First, we are interesting to find a signature σ of
length s with a low probability p0 to appear in a benign file.
In classical signature-based detection, the number of appear-
ances of a contiguous signature σ in a benign file of n bytes
is distributed as:1

Z ∼ N
(
(n − 2)p0,

√
(n − 2)p0(1 − p0)

)
(1)

The false positive rate of such detector is directly determined
by p0. Thus lowering the value of p0 will result in a lower
false positive. In order to apply with a certain level of false
positive rate, one should require that the p0 will not exceed
a certain value e.

However estimating p0 is not an easy task. Assuming we
are using a relatively small sample of benign files, then simply
measuring the frequency of signature σ in the sample might
be unreliable. As proposed in [11], we can use a first-order
Markov model to estimate the probability p0 of a signature
σ containing s bytes as:

p̂0 (σ) = Pr(b1) · Pr(b2 |b1) · Pr(b3 |b2) · · · Pr(bs |bs−1)

where bi is the i th bytes in σ.

Let f ∗(x) represents a function that returns a signature
of length x that appears in the malware code and has low-
est p̂0. However if f ∗(s) is not sufficient, i.e. p̂0 (f ∗ (s)) <

e, then we are compelled to search for a larger signature
f ∗(s + 1). Note that p̂0 (f ∗ (x)) is monotonically decreas-
ing in x because there are only two cases:

1. If f ∗(x) ⊂ f ∗(x + 1) then p̂0(f ∗(x + 1))= p̂0(f ∗(x))·
Pr(bx+1|bx) ≤ p̂0(f ∗(x)) (which satisfies monotony)

2. If f ∗(x) �⊂ f ∗(x + 1) then p̂0(f ∗(x + 1)) ≤ p̂0(f ∗(x))

because by definition of f ∗ p̂0(f ∗(x + 1)) ≤ p̂0(f ∗
(x)&b) where & indicates the concatenation operation.

Other requirements from the signature are: the signature
should be sufficiently short to decrease the problems of Inter-
net packet splits and detection hardware storage limitations
(i.e., various IDS/IPS devices such as DefensePro [21]);
Third, the signature should comply to the limitations of high-
speed deep packet inspection devices that can detect and
remove malware in real-time in high-speed data stream.
Finally, it should be well-defined to enable totally automatic
generation. The major challenge in conforming to the afore-
mentioned requirements was to develop a methodology that
can locate code segment or segments highly unique to a given
malware instance and can therefore serve as a powerful and
unique signature meeting the stringent requirement set forth
by commercial high-speed malware filtering devices.

1 This is slightly different from the probabilistic law presented in [14]
because here we are not referring to the general case of which the sig-
nature bytes are not necessary contiguous.

123

94 G. Tahan et al.

Fig. 1 The Auto-Sign methodology

Since many malware executables nowadays are in fact
developed using 4th Generation development platforms (e.g.
MSVC, J2EE, Delphi), the binary code of malware nowadays
contains a large portion of code placed by these develop-
ment platform. These portions of common code are identical
or almost identical except address references. Such common
segments were not developed by the authoring hacker, but
were linked to the malware as part of the underlying code
generator’s library and are termed Common Function Code
(CFC). To significantly decrease the risk of selecting such
abundant segments as a signature that may lead to high false
positive rate, we must first identify and disregard the CFC
part. The CFC of a malware file can be identified by analyz-
ing the malware content against a repository of CFC which
is termed a Common Function Library (CFL). The CFL can
be derived based on a collection of benign executables and
should be regularly updated in order to take into account the
evolution of benign (and potentially malicious) files.

To meet the requirements stated above, we developed the
Auto-Sign methodology which is schematically described in
Fig. 1.

3.1 Setup

During the setup phase a data structure (library) representing
a collection of benign executables is constructed. The data
structure is termed CFL.

The CFL is comprises of the following data structures.

1. 3-gram-frequency: A vector of 224 (∼16 million)
entries where each cell represents the number of occur-
rences of each 3-gram (three consecutive bytes) in the
collection of benign files. The n-gram size was chosen

to be 3 in order to comply with memory constraints.
N-Gram was also used in [22] for malware detection
and in [23,24] for malware phylogeny. The collection
of benign files used for constructing the CFL is scanned
sequentially in order to record the number of occurrences
of each 3-gram.

2. 3-gram-Files-association: A 224 × 64 bit-map where a
‘1’ Binary value in a cell (i, j) indicates the appearance
of a specific 3-gram i in the j th group of files. The CFL
files are divided into 64 groups.

3. 3-gram-relative-position-within-file: A 224 × 64 bit-
map where a ‘1’ Binary value in a cell (i, j) indicates
the appearance of 3-gram i in the j th internal segment
of a file (assuming the file is divided into 64 equal length
segments).

The common threat library termed CTL can be constructed
as a separate data structure in a similar manner.

Maintaining lookup tables which capture the appearance
of each possible 3-gram in a file (or group of files for large
CTL/CFLs), as well as the relative position of 3-grams in
each file promotes the scalability of Auto-Sign. This enables
handling large repositories of CFL/CTL files representing
many heterogeneous software platforms, when other tech-
niques such as LcSeq [20] are not feasible anymore.

3.2 Signature generation

The aim of this process is to auto generate an efficient signa-
ture. The process is repeated for each malware M . First, a set
of signature candidates is extracted from different positions
within the malware M . Each signature candidate CM looks
for a fixed contiguous sequence of bytes CM ∈ {0, 1, 2, . . . ,

255}s with s = |CM |. Using our 3-grams representation CM

comprises a number of 3-grams depending on the length of
the signature (e.g. a signature of length 4 bytes is comprised
from two 3-grams that overlap by two bytes). Employing the
3 data structures prepared during the setup stage (3.1), the
following indices are calculated for each signature candidate
extracted from the malware.

Spread

In Sect. 3.1 we have divided each file into 64 segments. The
“Spread” measure represents the spread of the signature’s
3-grams along the various segments for all the files in the
CFL. For example, Spread = 1 indicates that the signature is
located in only one segment in all the files of the CFL.

The match of a certain 3-gram k in a benign subset S
of three contiguous bytes may be described as a Bernoulli

123

Auto-Sign: an automatic signature generator for high-speed malware filtering devices 95

variable:

X S
k =

{
1 pgram

k
0 1 − pgram

k

The value pgram
k is determined by the efficiency of the k’s

3-gram.
We define the following variable with respect to a segment

j :

Y j =

⎧⎪⎪⎨
⎪⎪⎩

1, iff ∀3gram ⊂ CM ,

∀file ∈ CFL : 3gram ⊂ segment j (file)

0, else

(2)

where segment j (file) denote the j th internal segment of file.
Let p j,k,i represent the probability of k’s 3 gram to appear

at least one time in segment j of a benign file i . p j,k,i can be
estimated the complementary probability, i.e. that the prob-
ability of the event that k is not been found in the segment:

p j,k,i = 1 − (
1 − pgram

k

)|segment j (i)|−2
(3)

Thus Y j is distributed as Bernoulli with success probability
of

pseg
j =

∏
k⊂CM

∏
i∈CFL

p j,k,i (4)

Note that because the segments are equally sized then pseg
j =

pseg
i ; ∀i �= j
The following formula specifies the spread measure:

SpreadCFL(CM) =
64∑
j=1

Y j (5)

Spread is distributed as the sum of 64 identically distributed
Bernoulli random variables which can be approximated to
Normal distribution N (64 · pseg,

√
64 · pseg · (1 − pseg)).

Freq

The average frequency of all 3-grams that comprise a
candidate signature (computed using the 3-gram-frequency
data structure). Higher “Freq” may indicate a bad signature
candidate. The following formula specifies the probability
measure:

FreqCFL(CM) =
∑

∀k⊂CM ;|S|=3
∑

∀file∈CFL
∑

∀S⊂file;|S|=3 X S
k

|CFL|(|CM |−2)
(6)

Note that |CM | − 2 represent the number of 3 gram in the
signature CM .

Freq is a sum of distributed Bernoulli random variables.
Note that the central limit theorem can not be applied here
directly as the X ’s are not identically distributed (different

success probabilities). Thus we are using Poisson approxi-
mation as proposed in [25]:

Pr (Freq = k) = λk · e−λ

k! (7)

where

λ =
∑

∀k⊂CM ;|S|=3
∑

∀file∈CFL |file − 2| · pgram
k

(|CM | − 2)
(8)

The cumulative distribution function (CDF) is:

Pr (Freq ≤ k) = � (k + 1
, λ)

	k
 (9)

where �(x, y) is the Incomplete gamma function and 	k
 is
the floor function.

R = Freq/Spread

By dividing the aforementioned freq and spread we are able to
further increase and normalize the crude probability metric
for a candidate signature. For example, when all the com-
prising 3-grams of the candidate signature are concentrated
in the same area within an executable (most likely indicat-
ing an area of common code) the normalized score will yield
a higher value compared to a situation (in a different exe-
cutable) where the 3-grams are found spread in numerous
relative positions within the executable.

We hypothesize that those m candidates are less likely to
appear within CFL files in consistent areas of a file thus less
likely to belong to chunks common code. This hypothesis
indicates that low ratio candidate signatures are associated
with lower signature probabilities in benign files (signature
efficiency).

Proposition 1 mathematically examines this hypothesis
under limited circumstances. In Sect. 4.2 we empirically
examine this hypothesis in general circumstances.

Proposition 1 Let R1 and R2 represent the ratios of two
candidate signatures C1 and C2 both of length s = 3 test on
single file. If P0(C1) < P0(C2) then E(R1) < E(R2).

Proof R1 and R2 are ratio of two Poisson variables. Thus

E (R1) = E

(
Probability1

Spread1

)

= E(Probability1) · E

(
1

Spread1

)

Using the approximation of the mean of the inverse of a Nor-
mal distribution [26]

E(R1) ≈ λ1 · 1

µ1

According to the theorem condition (s = 3, |CFL| = 1) and
using Eq. (8) we obtain:

123

96 G. Tahan et al.

Fig. 2 Illustrating the motivation of the distance estimator

λ1 = |file − 2| · p0(C1)

µ1 = 64
(

1−(1 − p0(C1))
|file|/64−2

)

i.e.,

E (R1) = |file − 2| · p0(C1)

64
(

1− (
1 − p0(C1)

)|file|/64−2
)

We assume the file is large enough (i.e. larger than 64 × 4
which is reasonable assumptions as usually files contains
thousands of bytes). In this case moving from P0(C1) to
P0(C2), i.e. the probability is increased P0(C2)

P0(C1)
times will

result in increasing the nominator by P0(C2)
P0(C1)

times but the

denominator to be increased in less than P0(C2)
P0(C1)

times. Thus
the entire rate is increased as Proposition 1 argues.

Distance

We examine the distance of each candidate signature that
does not appear in the common library to its nearest signa-
ture that does appear in the common library.

The structure of executable is built from a continuous par-
tition of common library functions and then a unique code
partition. For the sake of clarity we assume that there is only
one partition of each type as illustrated in Fig. 2. Each line
represents a segment of 64 bytes which is also the length of
the candidates that we examine. Let assume for the example
that we know that the 25th segment is part of the common
library (by looking into many other files). However we are not
aware where the unique partition begins. However segments
that are located in higher places (i.e. are located far way from
the 25th segment) have larger chance to be part of the unique
block (and because of that can be good candidate for a signa-
ture). Specifically in Fig. 2, the 70th segment is more likely
to be part of the unique partition than the 60th segment. We
formulate the last intuition in the following proposition.

Proposition 2 Assuming the executable consists of two con-
tiguous partitions of common and unique code, then the

expected squared distance of an unique segment to the closet
known common segment is grater than the expected squared
distance of a common segment to the closet known common
segment.

Proof Without loss of generality the common code is located
in the first n segments and the unique code is located in the
remaining m segments. A unique segment located in position
b (b > n) and a common segment is located in position a
(a ≤ n).

The location of the closet known common segment is dis-
tributed according to some unknowndiscrete distribution:

Pr(location = i) = βi ;
n∑

i=1

βi = 1 :

The expected squared distance from location to a and b are:

SDcommon = E
[
(location − a)2

]
= E

[
location2

]

−2aE [location] + a2

SDunique = E
[
(location − b)2

]
= E

[
location2

]

−2bE [location] + b2

Thus:

SDunique − SDcommon = (b − a) (E [location] + b + a) > 0

Entropy

In addition the new estimators presented above, we also use
entropy measure which has known to be useful for selecting
effective signatures [11].

Bits

the total number of files (or file groups) that contain the sig-
nature.

Measures 1–6 were calculated for the CFL. Measures 2
and 6 were calculated for the CTL.

The signature generation process can therefore be sum-
marized as follows:

1. Generate signature candidates of length L by splitting
the examined malware executable to segments of equal
length L .

2. Calculate the following measures (for each signature
candidate):
Spread (based on CFL), Freq/Spread (based on CFL),
Bits (Based on CFL), Entropy (you should define it with
all others), Freq (based on CTL), Bits (based on CTL).
This stage is done using the data structures created in the
setup stage.

123

Auto-Sign: an automatic signature generator for high-speed malware filtering devices 97

3. Mark each candidate appearing in the CFL (bits > 0):
Only signatures that do not have any incident where all
their comprising 3-grams appear in a file within the CFL
repository are considered viable candidates.

4. Trim candidates appearing in the CFL (CFL-bits > 0)
or appearing in the CTL. Note that we trim candidates
that appear in the CTL because common functions of
malware are also not good candidates for identifying a
certain malware.

5. Rank remaining candidates (marked during stage 3)
by distance from CFL:
The n candidates with the highest physical distance from
the CFL/CTL areas (as calculated from the 3-gram-
relative-position-within-file matrix) are selected. Our
assumption is that a high distance of a signature candi-
date from the closest chunk of common code within the
executable indicates an area of code which represents the
malware more uniquely.

6. Rank remaining candidates using CFL–Freq/CFL–
Spread:
Out of the n candidates selected in phase 5, m candi-
dates with the lowest CFL–Freq/CFL–Spread ratios are
selected.

7. Rank remaining candidates based on entropy:
Out of the m candidates selected in phase 6, the w sig-
nature candidates with the highest degree of entropy are
ranked as best and final. It is customary to assume that
a signature candidate with a higher degree of entropy is
less likely to be associated with areas common to differ-
ent executables (i.e., constants, text with repeating char-
acters) and is therefore a more unique identifier of the
malware.

8. Select actual signature
Out of the w remaining candidates the one with the high-
est entropy is selected as the actual signature.

Table 1 provides a pseudo-code specification of the afore-
mentioned signature selection process.

Proposition 3 The computational complexity of the algo-
rithm in Table 1 is O(C R · (C L − 2)) where CR denote
the number of requested candidates and CL is the candidate
length.

Proof The computational complexity of the algorithm in
Table 1 is computed as follows: the GenerateSignatureCandi-
dates complexity is O(C R), the complexity of the first loop
(lines 3–13) is O(C R · (C L − 2)), the complexity of the
second loop (lines 15–19) is O(C R), the complexity of the
third loop (lines 21–26) is O(C R), the complexity of Candi-
dates.SortBY_DistanceFromCFL is C R · log(C R), the com-
plexity of the fourth loop on lines 29–30 is O(C R) (worth
case when N = 0), the complexity of the fifth and sixth loop
in lines 32–34 and 37–39 is also O(C R), and the complexity

of Candidates.SortBY_Entropy is C R · log(C R). Thus, the
overall complexity is O(C R · (C L − 2)).

4 Evaluation

4.1 Examining the effectiveness of Auto-Sign

The evaluation described in this section comprises of a set of
experiments we conducted to test the effectiveness of Auto-
Sign. The experimental design was aimed at assessing the
impact of various independent variables on the quality of
the signature which is characterized by the number of false
positive appearances of a signature in a set of clean (benign)
files. The independent variables used by this study are the
proportion of CFL versus test files and the size of a signature
(32, 64, 128 bytes).

The first task in the evaluation (Fig. 3) is to assemble two
repositories: one comprising benign and the other compris-
ing malicious (threat) executables. The benign repository is
randomly split ten times into training- and testing-sets. A dis-
tinct CFL is constructed ten times for each of these sampled
training sets where the size of the training set is increased
in a linear fashion during each of these ten iterations. The
threat repository, on the other hand, is held fixed during the
evaluation and therefore the CTL is constructed once before
being used by the signature generation algorithm.

In each such configuration we generated three signatures
with lengths of 32, 64, 128 bytes for all 849 malware files.
The false positive count of the best signatures generated by
Auto-sign was calculated by performing a cross-validation
of the selected signature against the test set.

The repository of benign files included 5494 files with
lengths ranging from 3 KB to 8 MB. The repository of mal-
ware instances comprised of 849 files with lengths ranging
from 6 KB to 4.25 MB (11 executables where above 1 MB and
200 above 300 KB). The distribution of malware file types is
depicted in Fig. 4. Generating the signatures for the malware
repository took 5.7 s using one 3 GHz Pentium processor.
Figure 5 depict a sample of Auto-Sign’s output with a list
of files, their signatures and the indices calculated for these
signatures.

Table 2 depicts the average false positive counts for
monotonically increasing proportions of the CFL in the fol-
lowing two configurations: 33% training set (CFL with
CTL)/67% testing set; and 50% training (CFL with
CTL)/50% testing set. Table 3 compares the average false
positive counts for 25% training–75% testing set once with
the CTL and once without. For each such configuration we
used a 10 cross-fold validation over the 849 files for the 3
signature lengths.

The results indicate the fact that even a large CFL of up to
50% of the clean files repository cannot compensate for short

123

98 G. Tahan et al.

Table 1 Pseudo-code of signature selection process

 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Candidates=GenerateSignatureCandidates(Maleware,CandidatesRequired,CandLen);

ForEach Candidate in Candidates do

{

Candidate.CFLspread = CFL.CalcSpread (Candidate);

Candidate.CFLNormProb = CFL.Average3gramProb (Candidate) / Candidate.CFLspread;

Candidate.CFL_bits = CFL.Count_Files_With_All_3gram (Candidate)

Candidate.Entropy = Entropy(Candidate.string);

Candidate.InCFL = (Candidate.CFL_bits > 0);

Candidate.CTL_bits = CTL.Count_Files_With_All_3gram (Candidate)

Candidate.InCTL = (Candidate.CTL_bits > T);

}

ForEach Candidate in Candidates do

{

If Candidate.InCFL then continue; // disregard

Candidate.DistanceFromCFL = DistanceFrom(Candidate.offset, Candidates);

}

ForEach Candidate in Candidates do

{

If Candidate.InCFL or

 Candidate.InCTL then

 Candidates.delete(Candidate);

}

Candidates.SortBY_DistanceFromCFL();

For i=Candidates.count downto N+1 do

Candidates.delete(i);

Candidates.SortBY_CFLNormProb();

For i=Candidates.count downto M+1 do

Candidates.delete(i);

Candidates.SortBY_Entropy();

For i=Candidates.count downto 2 do

Candidates.delete(i);

Signature = Candidates[1];

signatures of 32 bytes. The size of the signature is optimal
at 64 bytes as the improvement from 64 to 128 bytes is not
substantial. Moreover, the important factor with regards to

the CFL selection is the “proximity” of the common code
to the code generated by coding platforms. This is evident
from the fact that in the case of the 25–75%, removing the

123

Auto-Sign: an automatic signature generator for high-speed malware filtering devices 99

Fig. 3 The Auto-Sign
evaluation plan

Fig. 4 Distribution of Malware Types

files of the CTL hampers the precision of the signatures and
increases the amount of false positives. Moreover, the results
also indicate that there is no point increasing the CFL beyond
some optimal threshold. Once the CFL represents a critical
mass of the common code (in the case of choosing a 25%

CFL randomly, approximately 7.5% of the clean repository),
adding files to the CFL does not yield any marginal decrease
in the false positive rates of candidates.

Finally, we also generated signatures for the malware using
random selection and entropy-maximization for the various
signature lengths. Under the entropy-maximization
approach, the signature was picked from an area within the
malware which has the highest entropy score. This was done
in order to minimize the likelihood of the signature’s appear-
ance in benign executables which would yield frequent false-
positive detections.

Table 4, depicts the number of malware files whose sig-
nature was found in the benign repository of 5,494 files. The
results indicate that the entropy maximization technique is
superior to random selection in all signature lengths however
both techniques are far from being feasible for meeting the
quality of the CFL and especially CFL + CTL performance.

4.2 Are the estimators’ good indicators for the signature
efficiency?

Our method filters the signature candidate list by employing
different estimators in a cascade manner. In order to obtain

123

100 G. Tahan et al.

Fig. 5 Sample of signature data with indices

Table 2 False positive counts
as a function of the CFL size 50–50% with CTL 33–67% with CTL

32 byte 64 byte 128 byte 32 byte 64 byte 128 byte

CFL = 5% 32 0 0 CFL = 3.3% 54 9 10

CFL = 10% 28 1 0 CFL = 6.6% 31 1 1

CFL = 15% 19 0 0 CFL = 9.9% 25 1 0

CFL = 20% 17 0 0 CFL = 13.2% 30 0 0

CFL = 25% 21 0 0 CFL = 16.5% 25 0 0

CFL = 30% 20 0 0 CFL = 19.8% 22 0 0

CFL = 35% 22 0 0 CFL = 23.1% 22 0 0

CFL = 40% 26 0 0 CFL = 26.4% 19 0 0

CFL = 45% 23 0 0 CFL = 29.7% 17 0 0

CFL = 50% 25 0 0 CFL = 33% 21 0 0

a good signature (i.e. which does not appear in the benign
file), the estimators need to be an informative discrimina-
tor whether the signature might appear or not in a benign
file. In this section we examine how indicative the proposed
estimators are.

For this purpose we performed the following experiment.
We randomly sampled 2,000 64 byte signatures from vari-
ous malware instances and calculated their estimators. Then,
we searched for the signatures in a benign corpus to verify
whether they appear in benign files.

123

Auto-Sign: an automatic signature generator for high-speed malware filtering devices 101

Table 3 False positive counts
as function of the CFL
size—with/without CTL

25–75% with CTL 25–75% without CTL

32 byte 64 byte 128 byte 32 byte 64 byte 128 byte

CFL = 2.5% 43 10 7 CFL = 2.5% 58 20 10

CFL = 5% 43 6 5 CFL = 5% 55 14 10

CFL = 7.5% 46 10 9 CFL = 7.5% 52 11 10

CFL = 10% 34 0 0 CFL = 10% 39 2 2

CFL = 12.5% 25 0 0 CFL = 12.5% 36 1 1

CFL = 15% 24 0 0 CFL = 15% 32 2 1

CFL = 17.5% 35 0 0 CFL = 17.5% 40 2 1

CFL = 20% 35 0 0 CFL = 20% 38 1 1

CFL = 22.5% 25 0 0 CFL = 22.5% 36 3 2

CFL = 25% 27 0 0 CFL = 25% 32 2 1

Table 4 False positive counts: random versus entropy-maximization

Random Entropy

32 bytes 64 bytes 128 bytes 32 bytes 64 bytes 128 bytes

297 249 227 197 124 91

Table 5 summarizes the t-test results of two-samples
(assuming unequal variances) which compare the estimators
values in a case that the signature appeared in the benign cor-
pus or not. The results are very encouraging. For all estima-
tors the null hypothesis are rejected with a significance level
of α = 5%. Thus, the proposed estimators are good indi-
cators for predicting if a signature would appear in benign
files.

4.3 Are the estimators’ statistically independence?

In addition to the fact that estimators should be indicative
in selecting the best signature, we would like that the esti-
mators will be diverse in the way they rank signatures. Oth-
erwise, there is no point in using multiple estimators. This

requirement is similar to the diversity requirement in mix-
ture-of-experts techniques in AI [27], and specifically in mal-
ware detection [28,29]. These methods are very effective,
mainly due to the phenomenon that various types of mod-
els have different “inductive biases”. Diversity has therefore
been applied to increase the predictive performance of clas-
sifier systems. In order to examine the diversity of the esti-
mators, we used the data described in the previous section
and checked whether the estimators were statistically inde-
pendent using chi-square test (Table 6).

Unfortunately, our results indicate that the estimators are
statistically dependent with α = 5%. However, Auto-Sign
does not simply weigh these estimators. Instead, it uses it in
a cascade fashion: first, it employs a distance estimator, then
a ratio estimator, and finally an entropy estimator. Thus, it is
more reasonable to examine the statistics dependence which
reflects this cascading procedure. Assuming that each esti-
mator filters half of the candidates to be used by the follow-
ing cascade, we examine the statistical dependence between
estimators’ values for the chosen (unfiltered) candidates and
the corresponding values of the subsequent estimator. The
results presented in Table 7, indicate that the estimators are
statistically independent with α = 5% when they are applied
in cascade.

Table 5 Results of t-test of two-sample assuming unequal variances

Estimator Mean value of Mean value of p value on two-tail Conclusion
the estimator for the estimator for
signatures that appeared signatures that did not
in benign corpus appear in benign corpus

Entropy 0.55 ± 0.008833 0.32 ± 0.075756 4.05E-37 Significant

Ratio 1493.06 ± 2441 3728.99 ± 3306 1.7E-25 Significant

Distance 13.28 ± 24.22 0.586 + 3.963629 3.62E-82 Significant

Number of observations 1695 305

123

102 G. Tahan et al.

Table 6 Results of chi-square test for independent

Test p value Conclusion

Distance versus entropy 0.037 Statistically dependent

Ratio versus entropy 1.53636E-52 Statistically dependent

Ratio versus distance 0.005 Statistically dependent

Table 7 Results of chi-square test for independence in cascade manner

Test p value Conclusion

Distance versus ratio 0.363 Statistically independent

Ratio versus entropy 0.070 Statistically independent

5 Conclusion

This paper proposes a new approach for automatic genera-
tion of signatures for malware executable of all sizes with an
intention to be used by high-speed malware filtering devices.
We consider the fact that large executables are comprised of
substantial amounts of code that originates from the under-
lying standard development platforms and is thus replicated
across various instances of both benign and malware devel-
oped by these platforms. In order to minimize the risk of false
positive classification of benign executables as malware, we
propose and evaluate a method to discard signature candi-
dates that contain such replicated chunks of code.

The empirical findings presented in Sect. 4 support the
viability of the general approach proposed by this research
and suggest that eliminating signature candidates belong-
ing to common code segments has a more profound effect
on restricting the level of false positives than increasing the
length of a signature. N-grams, however, are not the only
measure which can be used to realize the general approach
posed by Auto-Sign and alternative ones can be used as a sub-
stitute for representing signatures (i.e., segment prefix/suffix,
hash values, etc.)

The main benefit of the proposed method is that it enables
analysis at the binary level and does not require a semantic
interpretation of code into function blocks using techniques
such as code markers, disassembly, state-machines, etc. This
benefit means that the methodology is generic and is not
affected by changes in CPU or introduction of new develop-
ment platforms.

Nevertheless, enterprises which would like realize Auto-
Sign in generating signatures for high-throughput network
security appliances need to follow a more exhaustive and
systematic methodology for building their CFL repository.
Considering the global variety of development platforms and
the mobility of threats facilitated by the Internet, ensuring the
external validity of this study relies substantially on reach-
ing a critical mass of CFL files which represents abundant

development platforms. Furthermore, it often does not suffice
for a signature to be available—deployed signatures must be
managed, distributed and kept up-to-date by security admin-
istrators [30].

We plan to repeat the evaluation Auto-Sign on a larger
scale with much more malware files and CFLs generated for
different development environments. We also plan to evalu-
ate additional methods for trimming, ranking and choosing
the best signature out of the collection of candidates. In addi-
tion, in order to further strengthen the signatures and mini-
mize the risks of false positives we propose to use “composite
signatures” which are generated by using two or more dis-
tinct signatures for each malware. This activity addresses
the biggest challenge of Auto-Sign which is the need to
reduce to zero the amount of false positives before being
deployed for generating signatures in high-speed malware
filtering devices. In the future we plan to use Auto-Sign to
generate multiple signatures in order to increase the resis-
tance against black box analysis as described in [11].

Acknowledgments The authors gratefully thank the action editors
and the anonymous reviewers whose constructive comments signifi-
cantly helped in improving the quality and accuracy of this paper.

References

1. Brumley, D., Newsome, J., Song, D., Wang, H., Jha, S.: Towards
automatic generation of vulnerability-based signatures. In: Pro-
ceedings of the 2006 IEEE Symposium on Security and Privacy
(2006)

2. Szor, P.: The Art of Computer Virus Research and Defense, Addi-
son–Wesley, Reading (2005)

3. Kim, H.A., Karp, B.: Autograph: Toward automated, distributed
worm Signature detection. In: Proceedings of the 13th Usenix Secu-
rity Symposium (Security 2004), San Diego, CA, August (2004)

4. Wang, K., Stolfo, S.J.: Anomalous payload-based network intru-
sion detection. In: Recent Advance in Intrusion Detection (RAID),
September (2004)

5. Singh, S., Eitan, C., Varghese, G., Savage, S.: Automated worm
fingerprinting. In: 6th Symposium on Operating Systems Design
and Implementation (OSDI), December (2004)

6. Yegneswaran, V., Giffin, J.T., Barford, P., Jha, S.: An architecture
for generating semantics-aware signatures. In: 14th USENIX Secu-
rity Symposium. Baltimore, Maryland, August (2005)

7. Christodorescu, M., Jha, S., Seshia, S., Song, D., Bryant, R.E.:
Semantics-aware malware detection. In: IEEE Symposium on
Security and Privacy. Oakland, California, May (2005)

8. Kreibich, C., Crowcroft, J.: Honeycomb: creating intrusion detec-
tion signatures using honeypots. SIGCOMM Comput. Commun.
Rev. 34(1), 51–56 (2004)

9. Provos, N.: A virtual honeypot framework. CITI Technical Report
03-1, Center for Information Technology Integration, University
of Michigan, Ann Arbor, Michigan, USA, October (2003)

10. Tang, Y., Chen, S.: Defending against Internet worms: a signature-
based approach. In: Proceedings of IEEE INFOCOM’05, Miami,
Florida, USA, May (2005)

11. Filiol, E.: Malware pattern scanning schemes secure against black-
box analysis. J. Comput. Virol. 2(1), 35–50 (2006)

123

Auto-Sign: an automatic signature generator for high-speed malware filtering devices 103

12. Morin, B., Mé, L.: Intrusion detection and virology: an analysis of
differences, similarities and complementariness. J. Comput. Virol.
3(1), 39–49 (2007)

13. Elovici, Y., Shabtai, A., Moskovitch, R., Tahan, G., Glezer, C.:
Applying Machine Learning Techniques for Detection of Malicious
Code in Network Traffic. In: The 30th Annual German Conference
on Artificial Intelligence (KI-2007), Lecture Notes in Computer
Science, vol. 4667, pp. 44–50. Springer, Osnabrück (2007)

14. Filiol, E., Josse, S.: A statistical model for viral detection undecid-
ability. J. Comput. Virol. 3(2), 65–74 (2007)

15. Filiol, E., Raynal, F.: Malicioux, Malicious Cryptography …
Reloaded and also Malicious Statistics. CanSecWest 2008
Vancouver, pp. 26–28 Mars (2008)

16. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms. MIT Press, London (2001)

17. Lawrence, C.E., Reilly, A.A.: An expectation maximization (EM)
algorithm for the identification and characterization of common
sites in unaligned biopolymer sequences. Proteins Struct. Funct.
Genet. 7, 41–51 (1990)

18. Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neu-
wald, A.F., Wootton, J.C.: Detecting subtle sequence signals: a
Gibbs sampling strategy for multiple alignment. Science 262, 208–
214 (1993)

19. Newsome, J., Karp, B., Song, D.: Polygraph: automatically gener-
ating signatures for polymorphic worms. In: 2005 IEEE Sympo-
sium on Security and Privacy (S&P’05), pp. 226–241 (2005)

20. Hirschberg, D.S.: Algorithms for the longest common subsequence
problem. J. ACM 244, 664–675 (1977)

21. DefensePro, Radware. http://www.radware.com/
22. Abou-Assaleh, T., Cercone, N., Kešelj, V., Sweidan, R.: NGram

Based Detection of New Malicious Code. In: 28th Annual Inter-
national Computer Software and Applications Conference Work-
shops and Fast Abstracts (COMPSAC’04), pp. 41–42 (2004)

23. Goldberg L.A., Goldberg, P.W., Phillips, C.A., Sorkin, G.:
Constructing Computer virus phylogenies. J. Algorithms 26(1),
pp. 188–208

24. Karim, M.E., Walenstein, A., Lakhotia, A.: Malware Phylogeny
Using Maximal πPatterns. In: EICAR 2005 Conference: Best
Paper Proceedings, pp. 167–174 (2005)

25. Le Cam, L.: An approximation theorem for Poisson binomial dis-
tribution. Pac. J. Math. 10, 1181–1197 (1960)

26. Lai, C.D., Wood, G.R., Qiao, C.G.: The mean of the inverse
of a punctured normal distribution and its application. Biom.
J. 46(4), 420–429 (2004)

27. Rokach, L.: Collective-agreement-based pruning of ensembles.
Comput. Stat. Data Anal. 53(4), 1015–1026 (2009)

28. Menahem, E., Shabtai, A., Rokach, L., Elovici, Y.: Improving mal-
ware detection by applying multi-inducer ensemble. Comput. Stat.
Data Anal. 53(4), 1483–1494 (2009)

29. Moskovitch R., Elovici Y., Rokach L.: Detection of unknown com-
puter worms based on behavioral classification of the host. Comput.
Stat. Data Anal. 52(9), 4544–4566 (2008)

30. Rieck, K., Laskov, P.: Language models for detection of unknown
attacks in network traffic. J. Comput. Virol. 2(4), 243–256 (2007)

123

http://www.radware.com/

	Auto-Sign: an automatic signature generator for high-speed malware filtering devices
	Abstract
	1 Introduction
	2 Related work on automatic signature generation (ASG)
	3 The proposed automatic signature generation method
	3.1 Setup
	3.2 Signature generation

	4 Evaluation
	4.1 Examining the effectiveness of Auto-Sign
	4.2 Are the estimators' good indicators for the signature efficiency?
	4.3 Are the estimators' statistically independence?

	5 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

